Estudo da viabilidade econômica e nutricional da adição de torta de babaçu na ração para peixes da espécie tilápia.

Mayara Coelho Sá¹, José Elias Machado Lopes², José Manuel Rivas Mercury³, Paulo Roberto Sousa Lima⁴, Natilene Mesquita Brito³

RESUMO

A piscicultura é um ramo da aquicultura que apresenta inúmeras vantagens, estando associada a pouca mão-de-obra e retorno econômico garantido, porém devido ao alto custo com a alimentação não é muito difundida, portanto, devem-se formular rações economicamente viáveis para utilização na piscicultura. Assim, o objetivo deste trabalho foi verificar a viabilidade econômica e nutricional da adição de torta de babaçu fornecida para peixes da espécie tilápia do nilo (Oreochromis niloticus L.) na fase alevino II. Foram testados rações formuladas com torta de coco babaçu nas proporções 0%, 12%, 16% e 20%, estas formulações foram ofertadas aos alevinos três vezes ao dia. O experimento durou 90 dias, onde os parâmetros da água (pH, condutividade, Oligênio Dissolvido-OD e temperatura) e da ração (umidade, nível de lipídeos, cinzas, proteína e carboídratos), foram avaliados. Os resultados obtidos mostraram que tanto as taxas de crescimento dos peixes quanto os parâmetros físico-químicos da água e da ração mantiveram-se dentro das proporções aceitáveis. Todas as proporções das rações utilizadas foram bem aceitas pelos peixes e proporcionaram o crescimento adequado dos mesmos. Entretanto, levando-se em consideração os custos para obtenção da ração, a proporção de 20% reduz os custos em torno de 63,00% em comparação ao valor da ração comercial, comprovando, desta forma sua viabilidade nutricional e econômica para utilização da ração na piscicultura.

Termos para indexação: valor nutricional, torta de coco babaçu, piscicultura.

Study of the economic and nutritional viability of adding babassu press cake to fish feed for tilapia species fish.

ABSTRACT

Fish farming is a branch of aquaculture that presents numerous advantages, being associated with low requirement for human labor and guaranteed economic return, however due to high feed costs it is not widespread, therefore, economically feasible feeds should be formulated for use in fish farming. Thus, the aim of this work was to check the economic and nutritional viability of babassu press cake addition to fish feed for Nile’s tilapia species (Oreochromis niloticus L.), in fry-phase II. Feeds formulated with babassu press cake in the 0%, 12%, 16%, and 20% ratios were tested, offered to fry three times a day. The experiment lasted 90 days in which the water (pH, conductivity, Dissolved Oxygen-DO

¹ Mestre em Química Analítica – Universidade Federal do Maranhão. Av. dos Portugaeses, s/n - São Luís - MA - CEP: 65085-580. E-mail: mayara_coelho@yahoo.com.br.
² Mestre em Engenharia dos Materiais, Instituto Federal de Educação, Ciência e Tecnologia do Maranhão (IFMA)- Av. Getúlio Vargas, 4 - Monte Castelo, CEP: 65030-005, São Luís/MA.
³ DAQ/Instituto Federal de Educação, Ciência e Tecnologia do Maranhão (IFMA)- Campus São Luís Monte Castelo, Av. Getúlio Vargas, 4 - Monte Castelo, CEP: 65030-005, São Luís/MA.
⁴ DHS/Instituto Federal de Educação, Ciência e Tecnologia do Maranhão (IFMA)- Campus São Luís Monte Castelo, Av. Getúlio Vargas, 4 - Monte Castelo, CEP: 65030-005, São Luís/MAMA.
and temperature) and feed (moisture, lipid levels, ash, protein and carbohydrates) parameters were evaluated. The results showed that both the growth rates of fish and the physico-chemical parameters of water and feed remained within acceptable proportions. All proportions of feeds were well accepted by fish and provided their appropriate growth. However, taking the costs for obtaining the feed into account, the 20% ratio reduces costs around 63.00% as compared with the value of commercial feed, proving thus its nutritional and economic feasibility for use in fish farming.

Index terms: nutritional value, babassu press cake, fish farming.

INTRODUÇÃO

A piscicultura é uma atividade que apresenta grandes potencialidades para o desenvolvimento, uma vez que o litoral brasileiro apresenta 8,4 mil km de extensão, no qual 5,5 milhões hectares são reservatórios de águas doce (PORTO, 2004; TEIXEIRA, 2002; VIEIRA et al. 2003).

No entanto, esta atividade embora promissora não é desenvolvida devido aos elevados gastos com alimentação que chegam à atingir de 50% a 70% do custo total da produção. Todavia, esses valores podem ser diminuídos entre 30% e 40% com a manufatura de rações, utilizando produtos da própria região (LIMA, 2011). Além deste fator, uma dieta balanceada, influência no equilíbrio orgânico animal, determina maior resistência a doenças e responde por maior produtividade em sistemas intensivos (SILVA e HAHN, 2009).

Paradoxalmente, o Estado do Maranhão possui um potencial econômico significativo no que tange ao cultivo de babacu, onde 85% de sua produção são comercializadas sob a forma de óleo bruto, o restante é rejeitado. Além deste fator, as condições geográficas, climáticas e extensões de reservatórios de água doce, tornam-se favoráveis para o desenvolvimento da piscicultura, podendo estar ser uma alternativa relevante para a produção de ração usando como matéria prima o babacu (BRASIL, 2005; SILVA, 2004).

Na linguagem tupi, o babacu é batizado de uauaçu conhecido também por aguassu, guaçuassu, ovassu e coco de macaco. No Maranhão, é espécie de maior distribuição, cerca de 10 milhões de hectares com variação morfológica, pois formam outras espécies a partir das duas principais *Orbignya phalerata* Martins e *Orbignya oleifera* Burret, ambas com forte tendência a híbridar com outras espécies (PORTO, 2004; LIMA, 2005; LOPES, 2003; PROENÇA e BITTENCOURT, 2004).

Devido ao exposto, desenvolveu-se uma ração para peixes à base de babacu com tratamento piloto com o intuito de diminuir os custos do piscicultor e assim aumentar os lucros nesta atividade tanto na área da piscicultura quanto agrícola (quebradeiras de coco).

MATERIAL E MÉTODOS

2.1 Formulação da ração

A ração foi formulada, conforme descrição na National Research Council (NRC, 1993) como a mistura de farinha hidrolisada, farinha de peixe, farinha de sangue, premix vitamínico, mineral remoldio de trigo, aditivo antifúngico fungistático, vitamina C, farinha de carne, farinha de vísceras, fosfato de bicálcio, farelo de glúten, cloreto de clorina, metionina, aditivo antioxidante. Acrescida de Torta de Coco Babaçu (TCB) (OSTRENSKY e BOEGER, 1998).

A ração foi produzida manualmente em forma de peletes (pellet), no Laboratório de Ictiologia (DEOLIUFMA) nas proporções de 0%, 12%, 16% e 20% de Torta de Coco Babaçu (TCB).

2.2 Manejo de fornecimento da ração

A ração em forma de peletes (pellet) nas seguintes proporções: 0%, 12%, 16% e 20% de Tora de Coco Babaçu (TCB), foram fornecidas aos peixes como alimentação, a Tabela 1 apresenta os tratamento realizados em cada bombona (CRESCENCIO e PUCCI, 2004; GOMES, 2001).

<table>
<thead>
<tr>
<th>Bombona</th>
<th>Torta de Coco Babaçu</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 %</td>
</tr>
<tr>
<td>2</td>
<td>0 %</td>
</tr>
<tr>
<td>3</td>
<td>0 %</td>
</tr>
<tr>
<td>4</td>
<td>12 %</td>
</tr>
<tr>
<td>5</td>
<td>12 %</td>
</tr>
<tr>
<td>6</td>
<td>12 %</td>
</tr>
<tr>
<td>7</td>
<td>16 %</td>
</tr>
<tr>
<td>8</td>
<td>16 %</td>
</tr>
<tr>
<td>9</td>
<td>16 %</td>
</tr>
<tr>
<td>10</td>
<td>20 %</td>
</tr>
<tr>
<td>11</td>
<td>20 %</td>
</tr>
<tr>
<td>12</td>
<td>20 %</td>
</tr>
</tbody>
</table>
As rações foram fornecidas aos alevinos de tilápia três vezes por dia, nos seguintes horários: 08h00min, 12h00min; 18h00min, de quantidade correspondente a 5% da biomassa total dos peixes por bombona.

2.3 Parâmetros físico-químicos da ração

Foram avaliados os parâmetros de umidade, cinzas, proteínas, extrato etéreo (lipídio), carboidratos em todas as amostras de ração com os diferentes incrementos da torta de coco babaçu, a fim de determinar as informações nutricionais do produto formulado, conforme descrito no manual de criação de peixes (PROENÇA e BITTENCOURT, 2004).

2.4 Manejo alimentar - tratamento piloto

A fim de verificar o crescimento dos peixes utilizando a ração de coco babaçu o experimento foi conduzido por 90 dias, utilizando 12 bombonas para tratamentos, enumerados de 1 a 12, agrupados de 3 em 3 de acordo com as proporções (0%, 12%, 16% e 20%) da ração a ser fornecida. Foram utilizadas bombonas com capacidade de 60L de água, com peso de 2800g e altura de 640mm, adaptou-se torneiras e vidros de 20 x 10mm na parte frontal para facilitar o monitoramento dos peixes, conforme ilustrado na Figura 1 (LUND e FIGUEIRA, 1989; BOSCOLO et al., 2010; HERNÁNDEZ et al., 2009; NASOPOULOU e ZABETAKIS, 2012).

![Figura 1: Bombonas com corte frontal.](image)

O abastecimento de água foi feito através de duas caixas d’água (2.000L e 310L). A água com rejeito dos alevinos foi recolhida e filtrada por filtro biológico, seguindo para a caixa de nível superior (2.000L) e por gotejamento encha a caixa menor (310L) para as bombonas, ou seja, formando um ciclo que contribuiu para o não desperdício de água (PROENÇA e BITTENCOURT, 1994). Ressalta-se que o sistema empregado neste trabalho facilita o controle do pH, temperatura, Oxigênio Dissolvido e crescimento dos peixes com alimentação (ração a base de coco babaçu) produzida (CENTEC, 2004; CENTEC, 1997; RIBEIRO et al., 2003).

Além desses fatores, este sistema de bombonas não contribui para elevação dos níveis de nutrientes, como por exemplo, fósforo e nitrogênio, nutrientes fundamentais para a produção de fitoplâncton e macrófitas aquáticas, como também a degradação ambiental natural, fatores que estão presentes em ambientes naturais e podem influenciar nos resultados do experimento. Como este experimento foi realizado em laboratório, em sistema controlado, todo crescimento e aumento de peso dos peixes foi decorrente da alimentação fornecida (SILVA e HAHN, 2009).

A fim de obter oxigênio dissolvido suficiente para os peixes, instalou-se uma bomba de oxigênio com ramificações para cada bombona, segundo as normas de criação de peixes (PROENÇA e BITTENCOURT, 1994).

A escolha da espécie foi baseada em pesquisas bibliográficas de consumo da população Maranhense, sendo assim, a tilápia da linhagem Chitalalada ou Tailandesa, foi utilizada, na fase, alevinos II, na qual ocorreu uma melhor adaptabilidade ao meio inserido. Os alevinos passaram por um processo de reversão sexual, que consiste basicamente em mudar as características sexuais de tilápia fêmeas, tornando-as aparentemente macho, melhorando a conversão alimentar da tilápia, uma vez que esta espécie se fertiliza rapidamente, consequentemente aumentando a população e dificultando a condução do experimento (TILÁPIA, 2006; ZIMMERMANN, 2000; LEONHARDT e URBINATI, 1999).

2.5 Parâmetros Físico-químicos da Água

A água foi monitorada através do aparelho oxigênômetro, marca UNITY, que mede simultaneamente pH, condutividade, Oxigênio Dissolvido (OD) e temperatura. Esta análise foi feita semanalmente, conforme descrito no manual de criação de peixes e em diversos artigos disponíveis na literatura (PROENÇA e BITTENCOURT, 1994).

2.6 Biometria dos Peixes

A média de peso dos alevinos foi medida durante 90 dias utilizando uma balança semi-analítica com precisão de 0,01 g, capacidade 3200g e modelo Shimadzu. A partir do peso foram calculadas as taxas de crescimento específico, cujos resultados são expressos em porcentagem diária e crescimento em peso (%/dia), mediante a seguinte equação (1.0) (HUA e BUREAU, 2012):
\[TCE = \frac{[L_n(P_f) - L_n(P_i)]}{t} \times 100 \] \hspace{1cm} (1)

Onde:
TCE: é a taxa de crescimento específica e o Ln (Pf) é o logaritmo natural do peso (g) no período f; Ln (Pi) é o logaritmo natural do peso inicial (g) e; t é o período, em dias, entre as datas de medida de peso (g).

RESULTADOS E DISCUSSÃO

3.1 Formulação e Processamento das Rações

A Figura 2 (a-b) mostra os pellets da ração formulada de torta de coco babaçu com proporções de 12%, 16% e 20% em peso.

![Imagem de rações de coco babaçu](image.png)

Figura 2: Ração preparada para nutrição dos peixes: a) Ração em forma de peletes; b) - Armazenamento da ração.

Durante o armazenamento, a ração desenvolvida apresentou boa estabilidade frente à oxidação não apresentando desenvolvimento de fungos.

A utilização de ingredientes alternativos na ração de peixes vem sendo amplamente pesquisado (LUND e FIGUEIRE, 1989; BOSCOLO, 2002; BOSCOLO, 2004; PEZZATO et al., 2009; SOUZA e HAYASHI, 2003; SOARES et al., 2003) com trabalhos iniciados desde 1988, onde foram avaliados o uso de farinha de camarão (36,3%), víscera de galinha (24,2%), defeito de frango (14%), caju natural concentrado (12,47%) entre outros ingredientes. No entanto, os resultados dos valores de proteínas ficaram abaixo do recomendado para o desenvolvimento dos peixes.

3.2 Composição físico-química da ração a base de torta de coco babaçu

Os resultados da composição química das rações utilizadas para a nutrição dos alevinos são apresentados na Tabela 2.

![Imagem de composição química](image.png)

Tabela 2: Composição físico-química das diferentes formulações da ração torta de coco babaçu.

<table>
<thead>
<tr>
<th>Determinante</th>
<th>0</th>
<th>12</th>
<th>16</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umididade (%)</td>
<td>13,8</td>
<td>11,5</td>
<td>12,0</td>
<td>12,0</td>
</tr>
<tr>
<td>Cinzas (%)</td>
<td>14,0</td>
<td>10,2</td>
<td>12,5</td>
<td>13,9</td>
</tr>
<tr>
<td>Proteínas (%)</td>
<td>55,0</td>
<td>45,5</td>
<td>46,5</td>
<td>46,0</td>
</tr>
<tr>
<td>Lipídios (%)</td>
<td>10,0</td>
<td>6,0</td>
<td>3,0</td>
<td>4,0</td>
</tr>
<tr>
<td>Carboidratos (%)</td>
<td>8,0</td>
<td>26,5</td>
<td>29,0</td>
<td>22,1</td>
</tr>
</tbody>
</table>

Para proteínas, os resultados obtidos foram entre 43,5 a 55%, os níveis de umidade, cinzas, carboidrato determinados foram adequados, conforme o manual de criação de peixes, para a alimentação de alevinos de tilápia, o que proporcionou excelente desenvolvimento aos peixes (SPERANDIO, 2011; HAYASHI, 1999; MEURER et al., 2002; MEURER et al., 2005).

Por outro lado, os níveis de inclusão de torta de coco babaçu não influenciaram na sobrevivência dos animais, corroborando com os dados da literatura (EIRIK et al., 2012), com rações formuladas para a espécie Scophthalmus maximus.

A oscilação do valor da umidade nas diferentes formulações não influenciou no tempo de conservação das rações, uma vez que, estes valores foram menores que a umidade necessária para a proliferação de micorganismos. Por outro lado, o resíduo mineral fixo (cinzas) na amostra 12, foi inferior aos valores determinados nas outras formulações, porém, nem sempre este valor representa a totalidade na amostra, pois alguns sais podem sofrer redução ou volatilização durante o aecuimento (PEZZATO et al., 2006; POPMA e MASSER, 1999; ROTTAt et al., 2003).

3.3 Parâmetros físico-químicos da água

Os valores obtidos para as análises da água utilizada nas bombonas de crescimento dos alevinos, encontram-se na Tabela 3. Estes parâmetros são importantes no sistema de piscicultura, pois a qualidade da água não só influência no crescimento dos peixes, como também determina a sobrevivência dos mesmos. A qualidade da água é alterada devido aos processos de eliminação de dejetos e respiração dos peixes, assim como à quantidade de ração fornecida para alimentação dos peixes.

![Imagem de parâmetros físico-químicos](image.png)

Tabela 3: Parâmetros físico-químicos da água.

<table>
<thead>
<tr>
<th>Parâmetro</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7,42</td>
</tr>
<tr>
<td>Temperatura</td>
<td>28,5°C</td>
</tr>
<tr>
<td>Condutividade</td>
<td>500 μS/cm</td>
</tr>
<tr>
<td>OxiD diss</td>
<td>5,5 mg/L</td>
</tr>
<tr>
<td>Amônia</td>
<td>0,2 mg/L</td>
</tr>
<tr>
<td>Nitrato</td>
<td>0,1 mg/L</td>
</tr>
<tr>
<td>Nitrato</td>
<td>0,1 mg/L</td>
</tr>
</tbody>
</table>

De acordo com a Tabela 03, observa-se que o valor médio do pH é de 7,42 ± 0,07, valor que está entre o intervalo recomendado para criação de peixe, pois tanto o
aumento e o decrescimento fora do intervalo recomendado poderá ocasionar mortes dos peixes (Rotta et al., 2003).

Tabela 3: Parâmetros físico-químicos da água nas diferentes bombonas.

<table>
<thead>
<tr>
<th>Bombonas</th>
<th>pH</th>
<th>Conductividade (mS/cm)</th>
<th>Oxigênio dissolvido (mg/L)</th>
<th>Temperatura (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>7,97</td>
<td>0,218</td>
<td>5,30</td>
<td>27,5</td>
</tr>
<tr>
<td>B2</td>
<td>7,98</td>
<td>0,232</td>
<td>5,31</td>
<td>27,8</td>
</tr>
<tr>
<td>B3</td>
<td>7,64</td>
<td>0,233</td>
<td>5,67</td>
<td>27,4</td>
</tr>
<tr>
<td>B4</td>
<td>7,30</td>
<td>0,214</td>
<td>4,78</td>
<td>27,0</td>
</tr>
<tr>
<td>B5</td>
<td>7,64</td>
<td>0,209</td>
<td>6,69</td>
<td>27,2</td>
</tr>
<tr>
<td>B6</td>
<td>7,31</td>
<td>0,214</td>
<td>5,89</td>
<td>27,3</td>
</tr>
<tr>
<td>B7</td>
<td>7,47</td>
<td>0,222</td>
<td>5,79</td>
<td>27,9</td>
</tr>
<tr>
<td>B8</td>
<td>7,55</td>
<td>0,232</td>
<td>6,38</td>
<td>27,8</td>
</tr>
<tr>
<td>B9</td>
<td>7,49</td>
<td>0,231</td>
<td>6,20</td>
<td>27,4</td>
</tr>
<tr>
<td>B10</td>
<td>7,53</td>
<td>0,222</td>
<td>6,30</td>
<td>27,6</td>
</tr>
<tr>
<td>B11</td>
<td>7,47</td>
<td>0,196</td>
<td>6,38</td>
<td>27,4</td>
</tr>
<tr>
<td>B12</td>
<td>7,59</td>
<td>0,214</td>
<td>6,67</td>
<td>27,0</td>
</tr>
</tbody>
</table>

Quanto à temperatura, também, pode-se observar que o valor médio nas bombonas de 27,5 ± 0,16 °C, que também estão dentro dos padrões indicados para o desenvolvimento de peixes (25 a 32°C) (Ostrensky e Boeger, 1998; Castellani e Barrella, 2005; Souza, 1995).

Outro parâmetro importante sobre o metabolismo dos peixes no interior da bombona, ajudando a detectar fontes poluidoras no sistema, é a condutividade da água a qual deve situar-se no intervalo de 0,02-0,1 μS/cm em piscicultura. Verificou-se ainda, um valor médio de 0,21 ± 0,004 μS/cm, valor médio elevado com relação ao desejado, o que pode ser explicado levando em consideração a alta decomposição da ração e acentuada produção primária de planctons (fitoplanctons) dentro das bombonas. Os resultados da tabela também mostram que o valor médio da concentração de oxigênio dissolvido na água foi de 5,73 ± 0,29 mgL⁻¹, ligeiramente superior ao valor desejável que é 5,0 mgL⁻¹ de saturação, o que pode ter influenciado no crescimento dos peixes (Souza e Hayashi, 2003; Romagosa, 2000; Santos, 2007).

3.4 Determinação do crescimento diário dos peixes

Com a finalidade de avaliar o desempenho das rações utilizadas na alimentação dos peixes, comparou-se a ração de torta de coco babaçu com a ração comercial (0%), os dados da biometria dos peixes em função da concentração de torta de coco babaçu presente na ração foram analisados estatisticamente através do teste *t* student.

Tabela 4: Análise de crescimento dos peixes.

<table>
<thead>
<tr>
<th>Concentração de torta de coco babaçu</th>
<th>Peso médio (g)</th>
<th>TCE* (%/dia)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>10,47</td>
<td>1,07</td>
</tr>
<tr>
<td>12%</td>
<td>9,42</td>
<td>1,18</td>
</tr>
<tr>
<td>16%</td>
<td>11,34</td>
<td>1,48</td>
</tr>
<tr>
<td>20%</td>
<td>9,81</td>
<td>1,36</td>
</tr>
</tbody>
</table>

(*) – Tasa de crescimento específico

De acordo com os resultados contidos na Tabela 04 pode-se verificar que não houve diferença significativa (P>0,05) entre as médias dos pesos e a taxa de crescimento dos peixes, conforme medições de tamanhos e pesos dos peixes durante o experimento, ilustradas na Figura 3.

Figura 3: Fases de crescimento dos peixes.

Os resultados obtidos estão em conformidade com a literatura (Boscolo et al., 2010), que descreve que existe aumento linear entre as médias de ganho de pesos, contrapondo-se a redução linear na conversão alimentar da inclusão da torta de coco babaçu.

3.5 Análise de Custo

Com finalidade de se determinar a viabilidade econômica da ração utilizada neste trabalho para uso em pequenas unidades de piscicultura, foi realizada uma análise de custo apresentam na Tabela 5.

Tabela 5: Relação de Concentração de torta de Coco Babaçu (FCC) com custos com ração para os peixes.

<table>
<thead>
<tr>
<th>Concentração de Torta de Coco Babaçu (TCC)</th>
<th>Custo com a ração (R/Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>R$ 1,60</td>
</tr>
<tr>
<td>12%</td>
<td>R$ 1,40</td>
</tr>
<tr>
<td>16%</td>
<td>R$ 1,20</td>
</tr>
<tr>
<td>20%</td>
<td>R$1,00</td>
</tr>
</tbody>
</table>

Na Tabela 5, verifica-se que a ração para peixes produzida diminuiu o custo do piscicultor, principalmente quando utilizou-se 20% de torta de coco babaçu, pois o custo foi reduzido em mais de 60%. Vale ressaltar que estes custos diminuem, consideravelmente, quando se trabalha com quantidades maiores (toneladas).

CONCLUSÃO

A partir dos resultados obtidos não houve diferenças significativas (P>0,05) na relação médias dos pesos e a taxa de crescimento dos peixes nas proporções de torta de coco babaçu fornecida aos peixes. Todavia, quando leva-se em consideração a relação de custo benefício sugere-se como melhor resultado a utilização da ração com 20% em peso de torta de coco babaçu fornecida.
na alimentação de peixes da espécie tilápia, na fase alevino II.

Enfatiza-se que a utilização da ração na composição supracitada permitirá aos piscicultor reduzir os gastos com a alimentação dos peixes em mais de 60%, o que consequentemente acarretará maior lucro.

REFERÊNCIAS BIBLIOGRÁFICAS

TILÁPIA - Um Verdadeiro “Bovino” De Água Doce.

