Obtenção, caracterização físico-química e avaliação da capacidade antioxidante in vitro da farinha de resíduo de acerola (Malpighia glabra L.)

Cecília Teresa Muniz Pereira¹, Cleiane Régia dos Passos Silva², Alessandro de Lima³, Dalva Muniz Pereira⁴, Carlyanne do Nascimento Costa¹, Adeval Alexandre Cavalcante Neto¹

RESUMO

O Brasil apresenta condições ideais para o cultivo da acerola, sendo um dos maiores produtores mundiais dessa fruta. Seu processamento gera resíduos que geralmente resulta em acúmulo de lixo e impacto ambiental. O objetivo deste trabalho foi avaliar as características físico-químicas e atividade antioxidante da farinha do resíduo de acerola. Os resíduos foram obtidos de uma fábrica de polpa de frutas e em seguida transportados para o laboratório de Tecnologia de Alimentos do IFPI, onde posteriormente foram desidratados em estufa (60°C por 24h), triturados em liquidificador e peneirados para obtenção da farinha. Foram realizadas análises de cinzas, umidade, vitamina C, pH, acidez total titulável, lipídios, carboidratos, fibras, fenólicos totais e atividade antioxidante. Os resultados para as análises físico-químicas foram: cinzas (1,41%), umidade (8,25%), vitamina C (31,03 mg/100g), pH (3,69), acidez total titulável (4,68%), lipídios (1,16%), proteínas (2,64%) e fibras (5,25%). Para os fenólicos totais expressos em mg de ácido gálico/100g de amostra, a solução hidroalcoólica apresentou melhor poder extrator para compostos fenólicos da farinha de resíduo de acerola. A avaliação da capacidade antioxidante (EC50 em μg/mL), utilizando o radical livre DPPH, demonstrou que o extrato alcoólico foi o que apresentou melhor capacidade de seqüestro do radical DPPH, portanto melhor ação antioxidante.

Termos para indexação: Acerola, resíduo, farinha, composição físico-química, antioxidante.

Cerola’s (Malpighia glabra L.) residuum flour: Production, Physico-chemical characterization and Evaluation of its Antioxidant Capacity in vitro

ABSTRACT

Brazil presents ideal conditions for the cultivation of acerola, being one of the world's biggest producers of this fruit. Its processing generates waste which often results in the accumulation of waste and environmental impact. The objective of this study was to evaluate the physico-chemical characteristics and antioxidant capacity of flour made from acerola residuum. The residues were obtained from a fruit pulp plant and then transported to the laboratory of Food Technology of the IFPI, where subsequently were dried in an oven (60 °C for 24 h), ground in a blender and sieved to obtain the flour. Analyses of ash, moisture, vitamin C, pH, total titratable acidity, lipids, carbohydrates, fiber, total phenolics and antioxidant activity were measured. The results for the physicochemical analyses were: ash (1.41 %), moisture (8.25 %), vitamin C (31.03 mg/100 g), pH (3.69), total titratable acidity (4, 68%) , lipids (1.16 %) , protein (2.64 %) and fibers (5.25 %). For total phenolics expressed as mg of gallic acid/100g of sample, the hydro-alcohol solution showed powerful to extract phenolic compounds from flour made from acerola residuum. The evaluation of its antioxidant capacity (EC50 in mg/mL) using the free radical DPPH, showed that the alcoholic extract had the best sequestration capacity of the DPPH radical, therefore better antioxidant action.

Index terms: Acerola, residuum, flour, physico-chemical composition, antioxidant.

¹ Professor efetivo do Instituto Federal de Educação, Ciência e Tecnologia do Maranhão – IFMA - Campus Codó. E-mail: ceciteresa@ifma.edu.br.
² Professor efetivo do Instituto Federal de Educação, Ciência e Tecnologia do Piauí – IFPI.
³ Especialista em Controle de Qualidade de Alimentos pelo IFPI.
⁴ Especialista em Nutrição Clínica pelo Instituto Brasileiro de Pós-Graduação e Extensão, IBPEX, Curitiba - PR.
INTRODUÇÃO

A acerola pertence à família Malpighiaceae e os frutos são uma drupa de superfície lisa ou dividida em três gomos, com tamanhos variados de 3 à 6cm de diâmetro; pertence ao gênero Malpighia glabra L. e é uma fruta delicada, sendo conhecida como “Cereja-das-Antilhas” por ser originária das Antilhas, Norte da América do Sul e América Central. A importância da acerola tem sido relacionada ao seu estado nutricional, representado pelo seu alto teor de vitamina C, levando a uma demanda crescente por parte dos consumidores (GOMES et al., 2002; GONZAGA METO E SOARES, 1994; MEZADRI, 2006).

No Brasil, a introdução dessa fruteira ocorreu na década de 50, ganhando expressão econômica somente a partir da década de 90, com o aumento da demanda do produto, tanto pelo mercado interno como externo. Atualmente ela é difundida em praticamente todo território nacional, à exceção de regiões de clima subtropical e/ou de altitude, sujeitas a baixas temperaturas (OLIVEIRA; SOARES FILHO, 1998).

A acerola vem se destacando também por conter carotenoides e fitoquinôides, como flavonóides (antocianinas). De acordo com Aguiar (2001), o teor de β-caroteno da acerola, quando comparado com os demais frutos figura como de boa qualidade, que associado ao alto conteúdo de vitamina C a torna um fruto de grande importância nutricional.

A produção brasileira de acerola é de 32.990 toneladas, sendo concentrada no Nordeste com uma produção que corresponde a 69,61% do total. O estado de Pernambuco produz 23,11% da oferta nacional, vindo em seguida os estados do Ceará, com 14,32%, São Paulo, com 11,40% e Bahia com 10,48% (PERTINARI; TARSITANO, 2002).

Aliado ao aspecto nutricional e funcional do fruto, a acerola apresenta uma elevada produção e um forte potencial para industrialização, gerando resíduo agroindustrial que, geralmente, resulta em acúmulo de lixo e impacto ambiental (CAETANO et al., 2009). Em geral, calcula-se que, do total de frutas processadas, sejam gerados, na produção de sucos e polpas, 40% de resíduos agroindustriais para os frutos manga, acerola, maracujá e caju. As cascas e as sementes são frequentemente os maiores componentes de vários frutos e geralmente não recebem a devida atenção, não ocorrendo o reaproveitamento deste material, possivelmente, em decorrência da falta de valor comercial (LOUSADA JUNIOR, 2006; CAETANO et al., 2009).

A transformação dos resíduos agroindustriais, constituídos de cascas e caroços, pode ser um processo viabilizador e propulsor, devido à praticidade de uso, redução da percepibilidade, além de ser uma opção que evita danos ao ambiente (SANCHO et al., 2009).

Alem disso trabalhos tem demonstrado que os resíduos de frutos são ricos em compostos funcionais como os compostos capazes de degradar os radicais livres presentes nos organismos, podendo atuar eficientemente como antioxidantes; as cascas e as sementes de certos frutos exibem atividade antioxidante mais elevada do que a polpa, e o perfil dos fitoquímicos antioxidantes é diferenciado nas partes do vegetal (CAETANO et al., 2009).

O presente estudo foi desenvolvido com o objetivo de avaliar as características físico-químicas e atividade antioxidante da farinha do resíduo de acerola com o intuito de incentivar o reaproveitamento do mesmo, gerando alternativas nutricionais para a alimentação humana.

MATERIAL E MÉTODOS

Materiais

Os resíduos do processamento da acerola foram obtidos em uma fábrica de polpa de frutas de Teresina-PI, no período de julho a agosto de 2009 e transportados ao laboratório de alimentos do Instituto Federal de Educação, Ciência e Tecnologia do Piauí - IFPI, Campus Teresina onde foram conduzidos os experimentos.

Obtenção da farinha

A secagem foi realizada em estufa a temperatura de 60°C durante 24 horas (Figura 1).
Os resíduos da acerola eram compostos basicamente de sementes. A preparação da farinha foi feita através da trituração em liquidificador e em seguida, utilizou-se peneiramento para a sua homogeneização e obtenção da forma de farelo. O pó foi acondicionado em recipientes plásticos e herméticos para evitar a entrada de oxigênio.

Determinações analíticas dos parâmetros físico-químicos

Na farinha do resíduo da acerola foram feitas as análises de cinzas, umidade, vitamina C, pH, acidez total titulável, lipídeos, proteínas, fibras, fenólicos totais e atividade antioxidante.

O teor de cinzas ou resíduo mineral fixo correspondeu ao resíduo obtido por incineração em temperaturas de 550 a 570°C até a obtenção de cinzas claras, segundo IAL (2008).

A determinação de umidade foi obtida por aquecimento direto da amostra em estufa a 105°C por duas horas (IAL, 2008).

O teor de vitamina C foi determinado pelo método de Tilmans, utilizando-se 10mL de solução de farinha de resíduo filtrada, igual volume de solução ácida e 2,6 dicloroindolfenol na titulação, conforme IAL (2008).

A determinação de pH foi realizada pelo método potenciométrico, utilizando-se pHmetro digital da marca PHMETER modelo PH- 016, previamente calibrado com soluções tampões de pH 4,0 e 7,0 (IAL, 2008).

A determinação de acidez total titulável foi realizada pelo método alcalimétrico, utilizando-se como indicador fenolf taleína a 1% e titulante a solução de NaOH 0,1N (IAL, 2008).

O teor de proteína bruta foi determinado pelo método semi-micro de Kjeldahl, convertendo-se o teor total de N em proteína pelo uso do fator 6,25 (IAL, 2008). O teor de lipídeos foi determinado pelo método de Soxhlet, que consiste na extração do óleo com hexano durante oito horas, seguido de determinação gravimétrica (IAL, 2008).

O teor de fibra alimentar total foi determinado por método enzimático – gravimétrico (AOAC, 1995). Esse método baseia-se na gelatinização e hidrólise parcial do amido com uma alfa amilase termoresistente, seguido de hidrólise da proteína com uma protease e hidrolise do amido residual com uma amiloglucosidase. Em seguida, a porção fibra foi precipitada pela adição de etanol 95%, seguido de filtração e lavagem do resíduo com solventes.

Os carboidratos foram obtidos por diferença.

Obtenção dos extratos

Para a preparação do extrato aquoso da farinha de resíduo de acerola utilizou-se 100mL de água destilada e 5g de farinha, sendo em seguida homogeneizados em erlenmeyer usando o agitador magnético durante 1 hora e depois realizou-se a filtração a vácuo, sendo o líquido filtrado colocado em um frasco de cor âmbar armazenado em seguida sob refrigeração até o momento das análises. A preparação do extrato alcoólico e hidroalcoólico seguiu a mesma metodologia, o diferencial foi o solvente, pois no primeiro foi utilizado 100mL de álcool etílico a 98% e no segundo 80mL de álcool etílico a 98% e 20mL de água destilada.

Determinação da gravimetria

Pesou-se 1mL de cada extrato em um vidro de relógio, deixou-se na estufa até secar e após esfriar no dessecador pesou-se o material e fez-se a diferença entre o peso inicial e final em seguida calculou-se as concentrações dos extratos a serem utilizadas na leitura.

Determinações analíticas dos fenólicos totais

A determinação dos fenólicos totais seguiu a metodologia descrita por Swain & Hills (1959). Do extrato aquoso, alcoólico e hidroalcoólico de cada amostra, tomou-se 0,5mL em tubo de ensaio e adicionaram-se 8mL de água destilada e 0,5mL do reagente Folin Ciocalteau. A solução foi homogeneizada e, após 3 min, acrescentou-se 1mL de solução saturada de NaCO₃. Decorrida 1 hora de repouso, foram realizadas as leituras em triplicata das absorbâncias em espectrofotômetro (Coleman 33 D) a 720 nm. Utilizou-se como padrão o ácido gálico, nas concentrações de 2, 5, 10, 15 e 20 μg/mL para construir uma curva de calibração (Figura 2). A partir da reta obtida, realizou-se o cálculo do teor de fenólicos totais, expresso em mg de ácido gálico/100g de amostra. Todas as análises foram realizadas em triplicata.

![Figura 2. Curva padrão de ácido gálico.](attachment:image)

Determinação da atividade antioxidante pelo Método de captura de radicais DPPH⁺ (2,2 difenil-1-pricril-hidrazil)
Este método tem por base a redução do radical DPPH•, que ao fixar um H• (removido do antioxidante em estudo), leva a uma diminuição da absorbância. Para a análise das amostras, adicionaram-se a 1,5 mL da solução metanólica de DPPH• (6x10–5 M) uma aliquota de 0,5 mL das amostras contendo diferentes concentrações de cada extrato. As leituras foram realizadas em espectrofotômetro (Coleman 33 D) a 517 nm, após 20 minutos do início da reação. Todas as determinações foram realizadas em triplicata e acompanhadas de um controle (sem antioxidante). A queda na leitura da densidade ótica das amostras foi correlacionada com o controle, estabelecendo-se a porcentagem de descoloração do radical DPPH•. Permitindo calcular, após o estabelecimento do equilíbrio da reação, a quantidade de antioxidante gasta para reduzir 50% do radical DPPH• (valor EC50) (BRAND-WYLLIANS et al, 1995).

RESULTADOS E DISCUSSÃO

Os dados referentes à composição centesimal e aos parâmetros físico-químicos da farinha de resíduo de acerola estão apresentados, respectivamente, nas Tabelas 1 e 2.

Tabela 1. Composição centesimal da farinha de resíduo de acerola.

<table>
<thead>
<tr>
<th>Parâmetros físico-químicos</th>
<th>Média ± DP*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umidade (%)</td>
<td>8,25 ± 0,98</td>
</tr>
<tr>
<td>Cinzas (%)</td>
<td>1,41 ± 0,02</td>
</tr>
<tr>
<td>Lipídios (%)</td>
<td>1,16 ± 0,70</td>
</tr>
<tr>
<td>Proteínas (%)</td>
<td>2,64 ± 0,02</td>
</tr>
<tr>
<td>Fibras (%)</td>
<td>5,25 ± 0,02</td>
</tr>
<tr>
<td>Carboidrato (%)</td>
<td>81,29</td>
</tr>
</tbody>
</table>

*Tamanho padrão

Tabela 2. Parâmetros físico-químicos de pH, acidez e vitamina C no resíduo de acerola.

<table>
<thead>
<tr>
<th>Parâmetros físico-químicos</th>
<th>Média ± DP*</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>3,69 ± 0,58</td>
</tr>
<tr>
<td>Acidez (%)</td>
<td>4,68</td>
</tr>
<tr>
<td>Vitamina C (mg/100g)</td>
<td>31,03 ± 3,84</td>
</tr>
</tbody>
</table>

*Tamanho padrão

Com relação à umidade o valor médio encontrado foi de 8,25%, encontrando-se dentro do valor máximo estipulado pela legislação (BRASIL, 2005) para farinhas, que é de 15,0%. Farinhas com umidade acima de 14% favorecem o crescimento de microorganismos, além de a água ser um componente essencial para que ocorra reações químicas e enzimáticas (OLIVEIRA et al., 2009). Dias (2009), analisando pós alimentícios obtidos dos resíduos de polpas de goiaba e acerola, encontrou valores de umidade de 2,67% para o pô de acerola. Aquino e Leão (2009) caracterizando farinha de resíduo de polpa de acerola encontraram umidade de 8,60%.

As cinzas em alimentos se referem ao resíduo inorgânico remanescente da queima da matéria orgânica, sem resíduo de carvão (CHAVES et al., 2004). O valor médio encontrado para cinzas foi de 1,41%, valor próximo ao encontrado por Dias (2009), que foi de 1,69%.

Para os valores de lipídeos, proteínas e fibras, é possível constatar que devido à secagem houve compactação dos nutrientes em relação aos valores da acerola in natura citados por Freitas et al., (2006). Isso não significa que o produto obtido não possa ser utilizado como fonte complementar dos nutrientes citados, ajudando na dieta.

O valor médio de acidez titulável encontrado para a farinha de resíduos de acerola foi de 4,68%. A acidez baixa é um bom indicador para a conservação, pois produtos ácidos são menos propícios ao desenvolvimento de microrganismos. Aquino e Leão (2009) encontraram um valor médio de acidez de 2,55%. Dias (2009) encontrou um valor de médio de acidez para o pô de acerola de 3,39%.

O teor de ácido ascórbico encontrado foi de 31,03 mg/100g. Apesar de esse valor ser baixo em relação ao teor de vitamina C do fruto acerola, pode-se utilizar o produto como fonte complementar deste nutrientes, visto que a recomendação diária, segundo Waiztberg (2004), é de 60mg/100g. Dias (2009) encontrou valores de vitamina C em pó obtidos de resíduos de acerola de 121,5mg/100g. Vale ressaltar que alguns fatores podem alterar o valor de ácido ascórbico do produto, como por exemplo, o grau de maturação do fruto e o processamento, este último principalmente, pois a vitamina C é muito volátil.

Os valores encontrados para fenólicos totais na farinha de resíduo de acerola analisada podem ser visualizados na Tabela 3.

Tabela 3. Teores de fenólicos totais (expressos em equivalentes de ácido gálico) da farinha de resíduo de acerola em mg/100g de amostra.

<table>
<thead>
<tr>
<th>Extrapo</th>
<th>Média ± DP*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcoólico</td>
<td>66,91 ± 0,01</td>
</tr>
<tr>
<td>Aquoso</td>
<td>61,97 ± 0,02</td>
</tr>
<tr>
<td>Hidroalcoólico</td>
<td>88,38 ± 0,05</td>
</tr>
</tbody>
</table>

*Tamanho padrão

Os compostos fenólicos, presentes nas frutas e hortaliças, são um dos principais responsáveis pela atividade antioxidante destas. (KIM et al., 2003). Comparando a eficiência da extração dos três extratos utilizados, a solução hidroalcoólica apresentou melhor poder extrator para compostos fenólicos da farinha de resíduo de acerola.
Muitos solventes podem ser utilizados com sucesso, na extração de compostos fenólicos, porém, o aumento do rendimento depende, diretamente, da polaridade dos mesmos (DUH 1998). É válido ressaltar que, além dos compostos fenólicos, os frutos contêm outros inibidores de oxidação, como ácido ascórbico, ácidos hidroxicarboxílicos e carotenóides (POKORNÝ, 2007) e que a extração desses fitoquímicos também é influenciada pela polaridade do solvente utilizado.

Oliveira et al., (2009) avaliou a capacidade antioxidante de farinhas provenientes de resíduos de frutas e a farinha de resíduo de acerola mostrou o maior conteúdo de fenóis (94,6 ± 7,4) em relação às outras farinhas analisadas (maracujá e abacaxi). Sousa (2009), analisando resíduos de polpas de frutas, encontrou no resíduo de acerola o mais elevado teor de fenólicos totais, com destaque para o extrato hidroalcoólico (279,99 ± 3,5mg/100g).

Ressalta-se que os valores de teores de compostos fenólicos totais podem ser influenciados por diversos fatores como: a maturação, a espécie, práticas de cultivo, origem geográfica, estágio de crescimento, condições de colheita, processo de armazenamento das frutas, forma de processamento das polpas, peculiaridade metodológica relacionada ao solvente extrator e aos fenólicos usados como padrão para a quantificação dos compostos fenólicos (SOARES et al., 2008).

O potencial dos diferentes extratos da farinha do resíduo de acerola em sequestrar radicais livres foi expresso em EC50, e os resultados são descritos na Tabela 4. No que se refere à capacidade de sequestrar do radical DPPH, o valor de EC50 está inversamente relacionado à atividade antiradical (ROESLER et al., 2007). As substâncias antioxidantes presentes nos extratos reagem com o DPPH que é um radical estável, e converte-o em 2,2-difenil-1-picril hidrazina. O grau de descoloração indica o potencial antioxidante do extrato. Um extrato que apresenta alto potencial em sequestrar radicais livres possui baixo valor de EC50. Desta forma, uma pequena quantidade de extrato é capaz de decrescer a concentração inicial do radical DPPH em 50%.

De acordo com a Tabela 4, o extrato alcoólico foi o que apresentou menor valor de EC50, portanto, melhor capacidade de sequestrar do radical DPPH, seguido pelo extrato aquoso. A menor ação antioxidante foi exibida pelo extrato hidroalcoólico, que apresentou maior valor de EC50.

Sousa (2009) encontrou no resíduo de acerola valores de EC50 de 308,07 e de 386,46, para os extratos hidroalcoólico e aquoso, respectivamente, sendo estes os que apresentaram melhor atividade antioxidante dentre os resíduos analisados, ficando atrás somente do extrato hidroalcoólico do resíduo de goiaba (EC50 de 142,89).

Oliveira et al., (2008) observaram que na concentração de 100 µg mL-1 no que se refere à capacidade de sequestrar o radical DPPH, expressa em percentual de sequestro, a farinha de resíduo de acerola apresenta atividade de 81,6% na mesma concentração. Caetano et al., (2009) analisando a capacidade antioxidante de resíduos agroindustriais de acerola encontrou no extrato hidroetanoléico, uma capacidade de sequestro do radical DPPH (%) acima de 90%.

Nas Figuras 3 a 5 podem ser visualizados o potencial de redução do radical DPPH pelos extratos estudados de acordo com as diversas concentrações testadas.

Tabela 4. Capacidade antioxidante (EC50 em µg/mL) dos extratos aquoso, alcoólico e hidroalcoólico da farinha de resíduo de acerola, utilizando o radical livre DPPH.

<table>
<thead>
<tr>
<th>Extrato</th>
<th>EC50 em µg/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcoólico</td>
<td>359,42</td>
</tr>
<tr>
<td>Aquoso</td>
<td>418,48</td>
</tr>
<tr>
<td>Hidroalcoólico</td>
<td>471,42</td>
</tr>
</tbody>
</table>

Figura 3. Potencial de redução de DPPH de acordo com a concentração do extrato alcoólico da farinha de resíduo de acerola.

Figura 4. Potencial de redução de DPPH de acordo com a concentração do extrato aquoso da farinha de resíduo de acerola.

Figura 5. Potencial de redução de DPPH de acordo com a concentração do extrato hidroalcoólico da farinha de resíduo de acerola.
CONCLUSÕES

A partir dos resultados apresentados pode-se dizer que a caracterização físico-química da farinha de resíduo de acerola atendeu a legislação, principalmente com relação ao teor de umidade e acidez, fator que deve ser levado em consideração já que interfere na conservação do produto.

O valor de vitamina C da farinha de resíduo de acerola foi muito inferior quando comparado ao teor da fruta normal, mas pode-se utilizar a farinha como complemento desta vitamina.

A farinha de resíduo de acerola mostrou-se uma importante fonte de compostos fenólicos totais, apresentando, consequentemente, um bom potencial antioxidante, podendo contribuir no aporte destes na dieta.

Com o alto descarte de resíduos agroindustriais, principalmente no processamento de frutas como a acerola, a farinha de resíduo de acerola é uma alternativa viável para a diminuição do desperdício, podendo ser utilizada para o enriquecimento de produtos alimentícios.

REFERÊNCIAS BIBLIOGRÁFICAS

SANCHO S. O.; SILVA M. G. V.; RODRIGUES S.;

